
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1985
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Ensuring Accountability in Cloud for Portable

Devices
Reshma Sadasivan, Sangeetha, Dr S.Karthik

Abstract-Cloud computing is about moving computing from the single desktop pc/data centres to internet. In cloud computing, user’s data can be put it
in the cloud storage and it can be access from the cloud, by the users whenever and wherever they needed. The major feature of the cloud is that user’s
data are processed in remote machines, which are unknown to the data owners. Here the security problems are raised. Users fear about their data
control, so that they needed to account their data, which are stored in cloud. Accountability is the obligation to act as a responsible steward of the
personal information of others, to take responsibility for the protection and appropriate use of that information beyond mere legal requirements, and to be
accountable for any misuse of that information.

Keywords- Cloud Computing, Accountability

—————————— ——————————

INTRODUCTION

 Cloud Computing is a subscription-based service where
you can obtain networked storage space and computer
resources. In cloud computing model customers plug into
the cloud to access IT resources which are priced and
provided on- demand services. This cloud model composed
of five essential characteristics, three service models and
four deployment models. Users can store their data in
cloud and there is a lot of personal information and
potentially secure data that people store on their
computers, and this information is now being transferred to
the cloud. Here we must ensure the security of user’s data,
which is in cloud. Users prefer only the cloud which can be
trusted. In order to increase the trust in cloud storage, the
concept of accountability can be use. Accountability is
likely to become a core concept in cloud that increase the
trust in cloud computing. It helps to trace the user’s data,
protecting sensitive and confidential information,
enhancing user’s trust in cloud computing. In the context of
cloud, accountability is a set of approaches to addresses

two key problems. They are Lack of consumer trust in
cloud service providers and Difficulty faced by cloud
service providers with compliance across geographic
boundaries.Accountability can also be implemented in
portable devices. Using portable devices can increase the
risk of data loss and data exposure. Accountability is likely
to become a core concept in the cloud and to underpin new
mechanisms that help increase trust in the cloud.
Accountability is especially helpful for protecting sensitive
or confidential information, enhancing consumer trust,
clarifying the legal situation in cloud computing and
facilitating cross border transfers of data. Accountability
mechanisms complement preventive security and privacy
mechanisms by detecting policy violations after they occur,
identifying agents to blame for violations, and punishing
the violators.

2. BACKGROUND

 Accountability in cloud computing emerged due to
the security issues in cloud. Cloud stores mass amount of
user’s data, there is a critical need to be secured that data.
The owner of the data does not aware about where their
data is stored and they do not have control of where data is
placed. Here it explores the security challenges in cloud.
Some of the security risks include secure data transfer,
secure software interface, secure stored data, user access
control, data separation. To promote privacy and security

————————————————
• Reshma Sadasivan is currently pursuing post graduation in

computer science and ecngineering in Anna university, India,
reshmasadasivancse@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1986
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

concern of end users accountability mechanism is used.
Here the basic concept is that user’s private data are sent to
the cloud in an encrypted form, and then with the
encrypted data processing is carried out.
 Accountability become a core concept in cloud that
helps to increase trust in cloud computing. The term
Accountability refers to a narrow and imprecise
requirement that met by reporting and auditing
mechanisms. Accountability is the agreement to act as a
responsible proctor of the personal information of others, to
take responsibility for protection and appropriate use of
that information beyond legal requirements, and to be
accountable for misuse of that information. Prospective
accountability use preventive controls. Preventive controls
for the cloud include risk analysis and decision support
tools, policy enforcement, trust assessment, obfuscation
techniques, identity management. Retrospective
accountability use detective controls. Detective controls for
the cloud include auditing, tracking, reporting and
monitoring. Accountability in cloud focuses on keeping the
data usage transparent and track able.

In cloud computing technology there are a set of
important policy issues, which include issues of
privacy,security,anonymity, government surveillance,
reliability, and liability, among others . But the most
important between them is security and how cloud
provider assures it.
3 MODULE DESCRIPTION

3.1 Developing a cloud environment

 Initially the basic network model for the cloud data
storage is developed in this module. Four different network
entities can be identified as follows: Client(Data Owner): an
entity, which has large data files to be stored in the cloud
and relies on the cloud for data maintenance and
computation, can be either individual consumers or
organizations; Cloud Storage Server (CSS): an entity, which
is managed by Cloud Service Provider (CSP), has
significant storage space and computation resource to
maintain the clients’ data; Certificate Authority: an entity,
which has expertise and capabilities that clients do not
have, is trusted to assess and expose risk of cloud storage
services on behalf of the clients upon request. In the cloud
paradigm, by putting the large data files on the remote
servers, the clients can be relieved of the burden of storage

and computation; Public User: The one who access the
cloud data which is the private data of cloud data owners.
The public data is stored in the cloud by data owners for
business purposes it can be accessed by any user for their
needs.

3.2 Proposing a Cloud Information Accountability
(CIA) framework

The Cloud Information Accountability framework
proposed in this work conducts automated logging and
distributed auditing of relevant access performed by any
entity, carried out at any point of time at any cloud service
provider. It has two major components: logger and log
harmonizer. The logger is the component which is strongly
coupled with the user’s data, so that it is downloaded when
the data are accessed, and is copied whenever the data are
copied. It handles a particular instance or copy of the user’s
data and is responsible for logging access to that instance or
copy.

The log harmonizer forms the central component
which allows the user access to the log files. The logger is
strongly coupled with user’s data (either single or multiple
data items). Its main tasks include automatically logging
access to data items that it contains, encrypting the log
record using the public key of the content owner, and
periodically sending them to the log harmonizer. It may
also be configured to ensure that access and usage control
policies associated with the data are honored. For example,
a data owner can specify that user X is only allowed to view
but not to modify the data. The logger will control the data
access even after it is downloaded by user X.

The logger requires only minimal support from the
server (e.g., a valid Java virtual machine installed) in order
to be deployed. The tight coupling between data and
logger, results in a highly distributed logging system,
therefore meeting our first design requirement.
Furthermore, since the logger does not need to be installed
on any system or require any special support from the
server, it is not very intrusive in its actions, thus satisfying
our fifth requirement.

 Finally, the logger is also responsible for
generating the error correction information for each log
record and send the same to the log harmonizer. The error

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1987
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

correction information combined with the encryption and
authentication mechanism provides a robust and reliable
recovery mechanism, therefore meeting the third
requirement. The log harmonizer is responsible for
auditing. Being the trusted component, the log harmonizer
generates the master key. It holds on to the decryption key
for the IBE key pair, as it is responsible for decrypting the
logs.

Alternatively, the decryption can be carried out on
the client end if the path between the log harmonizer and
the client is not trusted. In this case, the harmonizer sends
the key to the client in a secure key exchange. It supports
two auditing strategies: push and pull. Under the push
strategy, the log file is pushed back to the data owner
periodically in an automated fashion. The pull mode is an
on-demand approach, whereby the log file is obtained by
the data owner as often as requested. These two modes
allow us to satisfy the aforementioned fourth design
requirement. In case there exist multiple loggers for the
same set of data items, the log harmonizer will merge log
records from them before sending back to the data owner.

. The log harmonizer is responsible for auditing.
Being the trusted component, the log harmonizer generates
the master key. It holds on to the decryption key for the IBE
key pair, as it is responsible for decrypting the logs. The log
harmonizer is also responsible for handling log file
corruption. In addition, the log harmonizer can itself carry
out logging in addition to auditing. Separating the logging
and auditing functions improves the performance.

 The logger and the log harmonizer are both
implemented as lightweight and portable JAR files. The
JAR file implementation provides automatic logging
functions, which meets the second design requirement.

3.3 Data Access in Cloud Information Accountability

 Develop the JAR file includes a set of simple
access control rules specifying whether and how the cloud
servers and possibly other data owners are authorized to
access the content itself. Then, he sends the JAR file to the
cloud service provider that he subscribes to. To

authenticate the CSP to the JAR, they use CA wherein a
trusted certificate authority certifies the CSP. In the event
that the access is requested by a user, they employ
authentication, wherein a trusted identity provider issues
certificates verifying the user’s identity based on his
username.

Once the authentication succeeds, the user will be
allowed to access the data enclosed in the JAR. Depending
on the configuration settings defined at the time of creation,
the JAR will provide usage control associated with logging,
or will provide only logging functionality. As for the
logging, each time there is an access to the data, the JAR
will automatically generate a log record, encrypt it using
the public key distributed by the data owner, and store it
along with the data The encryption of the log file prevents
unauthorized changes to the file by attackers.

3.4 Develop Automated Logging Mechanism

In the automated logging mechanism, the main
responsibility of the JAR is to handle authentication of
entities which want to access the data stored in the JAR file.
In this context, the data owners may not know the exact
CSPs that are going to handle the data. Hence,
authentication is specified according to the servers’
functionality. Each JAR contains the encrypted data, class
files to facilitate retrieval of log files and display enclosed
data in a suitable format, and a log file for each encrypted
item. They support two options;

PureLog: Its main task is to record every access to the data.
The log files are used for pure auditing purpose.
AccessLog: It has two functions: logging actions and
enforcing access control. In case an access request is denied,
the JAR will record the time when the request is made. If
the access request is granted, the JAR will additionally
record the access information along with the duration for
which the access is allowed.

 The most critical part is to log the actions on the
users’ data. In the current system, support four types of
actions, i.e., Act has one of the following four values: view,
download, timed-access, and Location-based access. For
each action, here propose a specific method to correctly
record or enforce it depending on the type of the logging

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1988
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

module. And finally designed the end to end mechanism
for auditing using push or pull mode configure for log files
send to the data owner.

Each inner JAR contains the encrypted data, class
files to facilitate retrieval of log files and display enclosed
data in a suitable format, and a log file for each encrypted
item. Here support two options: PureLog: Its main task is to
record every access to the data. The log files are used for
pure auditing purpose. AccessLog: It has two functions:
logging actions and enforcing access control. In case an
access request is denied, the JAR will record the time when
the request is made. The log files are used for pure auditing
purpose. If the access request is granted, the JAR will
additionally record the access information along with the
duration for which the access is allowed.

The two kinds of logging modules allow the data
owner to enforce certain access conditions either
proactively (in case of AccessLogs) or reactively (in case of
PureLogs). For example, services like billing may just need
to use PureLogs. AccessLogs will be necessary for services
which need to enforce service-level agreements such as
limiting the visibility to some sensitive content at a given
location.

3.5 Proposing Accountability in Portable Devices
 While the specification concludes with

claims defining the features of the invention that are
regarded as novel, it is believed that the invention will be
better understood from a consideration of the following
description in conjunction with the drawing figures, in
which like reference numerals are carried forward. A brief
description of the prior art is also thought to be useful. The
present invention solves the problem of downloading
portable applications and authenticating their source onto
client device with limited computing resources by creating
a signed application descriptor file (ADF), and a developer
descriptor file (DDF). The ADF is a file that describes the
portable application in terms of the computing resources it
requires, and can be loaded onto the client device first so
that
the client device can determine whether or not it has
sufficient resources, or it can let the user of the client device
determine if there are sufficient resources. The ADF file is
signed by the developer of the corresponding application

using a certification authority, which is a well known and
trusted signing authority. Attributes in the signed ADF
correspond to those of the application so that if the user of
the client device decides to load the application, the
application can be authenticated against the signed ADF.
 The DDF is associated with a particular application
software developer and specifies the general access control
related information assigned to the developer. For example,
a DDF may restrict the kind of application libraries that
applications developed by the developer can use, or the
security domain to which the developer belongs.

 In particular, a network client device, such as a
mobile communication device, connects with a distribution
server over one or more bearer networks. Typically the
bearer network includes a TCP/IP network, and for public
distribution of software, it includes the Internet. However,
numerous private networks are connected to the Internet
through various gateways and portals, including many
wireless mobile communication networks. Indeed, the
present invention is suited particularly well to use on
mobile communication devices such as Internet capable
mobile or cellular radio telephones.

These devices may use what is referred to as a
"micro browser" to view information, or "content", placed
on the Internet and other networks accessible by the device,
as well as execute portable code. As with general purpose
computers, there is a desire to load portable applications
onto these devices. Developers of portable applications
provide the application on a database of the distribution
server. Client devices access the distribution server over the
network and receive the desired portable code or portable
application over the connection. This is one way which
JAVA code sections, such as applets, are distributed.

Client network device and its computing
resources. In this instance, the client device is receiving an
application file, which includes a signed ADF and the
application code. The application code may be, for example,
a JAVA archive (JAR) file. These two parts maybe
transferred separately or together. The signed ADF
prescribes the security domain of the application when
loaded into the client device. Essentially, the security
domain determines which of the client device's resources
the application will be allowed to access when running in
the virtual machine environment. In the preferred

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1989
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

embodiment, the application is received in the form of byte
code which the virtual machine executes. The virtual
machine only allows the application to access the resources
permitted, as dictated by the signed ADF. The resources
include other processes, classes, and methods, as well as
certain hardware components such as volatile and non-
volatile memory space. The signed ADF is substantially
smaller than the presently used signed JAR file format
because a signed JAR file includes all applications-related
files, and is more desirable for use with computing devices
with relatively limited resources.

. The signed ADF includes an application descriptor file, a
file hash of the JAR file, a developer descriptor file (DDF), a
developer certificate, a time stamp, and a developer
signature. ADF describes the resources which are required
by the client device, and may include a security policy file
or a license policy file, or both. The ADF contains a pointer
to the network location of the application in the file hash,
an indication of the amount of memory space required to
execute the application, and the environment necessary for
execution. The security policy contains the information
regarding which resources the application needs
permission to use, as well as the names of files the
application may create, and the network addresses it may
need to access.

 The license policy may be used to set how the
application may be used, such as whether it as a finite
number of uses, or a finite period of time, whether it may
be transferred to other users, and so on. The file hash is a
hash of the JAR file , and is the result of a cryptographic
method which produces a small digest that can be used to
authenticate a larger file (in this case a JAR file), as is
known in the art. For additional security, more than one
hash may be used and included in the signed ADF using
different hash algorithms, such as SHAT, MD5, or others.

 The DDF also contains information about the JAR
file, and may also include information regarding the
developer. The developer's certificate is a certificate issued
to the developer and includes the developer’s public key so
that the certificate may be authenticated by the client
device. It also contains information about the identity of the
developer, the validity period, the issuing certificate
authority, the issuing date, and so on, to be used in the
authentication process. The time stamp is a signed time

stamp. It is provided by a trusted source, such as a
certificate authority or perhaps the client device's
subscriber network operator. By providing a signed
timestamp, the client device can determine when the
application was signed, and if that time stamp is authentic.
Finally, the developer's signature is concatenated onto the
other data structures. The developer's signature is allows
the client device to authenticate the ADF.

. The developer sends a request, containing the
hash for the ADF and the developer certificate, to a code
signing authority , and requests a signed timestamp. The
code signing authority is a trusted entity, such as, for
example, VeriSign, Inc., or the client's network operator. It
should be noted that the certificate authority and the code
signing authority are not necessarily the same entity. A
certificate authority manages certificates, while a code
signing authority verifies developer certificates and signs
ADF hash files and timestamps it. The developer generates
and sends a hash of the ADF to the code signing authority
and receives a signed timestamp back from the certificate
authority.

 The developer then concatenates the ADF,
the hash of the JAR file, the DDF, the developer's certificate,
and the signed time stamp together. The developer's
certificate contains a hash of the DDF. The developer signs
the concatenated file , by adding the developer's digital
signature , and the ADF is fully signed. The signed,
concatenated file is the signed ADF, and is then placed on a
distribution server , along with the application code or JAR
file. The network address of the signed ADF is then made
available so that client devices can download it to begin the
installation and authentication procedure for the JAR file.
In the preferred embodiment, the developer uses a software
developer's kit (SDK), which is a set of software creation
tools distributed by, for example, the creator of the virtual
machine environment that runs on the client device. The
SDK automates this whole procedure.

 The developer's browser, or similar client
application, first sends a certificate request to a code
signing certificate authority server, which may be operated
by the same certificate authority referred to above. The
certificate authority sends the developer information to a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1990
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

developer administration server. This entity may be, for
example, the operator of the client's home network or
network service provider. For example, in the case of the
client device being a wireless mobile communication
device, the developer administrator may be the wireless
service provider that provides the wireless communication
service. The developer administrator returns a developer
descriptor file (DDF) to the code signing certificate
authority , which becomes part of the signed ADF, as
described above in reference to FIG. 3. In the preferred
embodiment, the developer's certificate will contain a hash
of the DDF. The preferred format for the certificate is a
wireless transport layer security (WTLS) certificate because
it is smaller than, for example, an X.509 certificate. The
certificate authority then forwards a developer certificate
and the DDF, preferably both text encoded, to the
developer's computer, such as, for example, by email. The
text encoded information is easy to transfer as an email
enclosure.

After the signed ADF has been created and placed
on a distribution server, client devices can download the
signed ADF and the application or JAR file.The client
device has had a code signing certificate authority public
key and a time stamping root key placed in the client
device. The time stamping root key is a public key used for
authenticating the signed time stamp. To begin the method,
the client device transmits a request to a distribution server
for the application. The distribution server transmits the
signed ADF for the desired application, which is received
by the client device. Preferably the signed ADF contains an
application descriptor file, file hash of the application code,
developer descriptor file, developer certificate, signed time
stamp, and the developer certificate.

 These transactions take place using known
network protocols, such as TCP/IP. Upon receiving the
signed ADF, the client device verifies the developer
certificate with the code signing certificate authority's
public key. The client may also authenticate the signed time
stamp with the time stamping root key. The verified
timestamp is used to check whether the ADF file is signed
within the valid period of the developer certificate. Both of
these must be verified. If it was not already received, the
client device obtains the network location of the application
code or JAR file, and transmits a request to the server,
specifying the particular application desired . Although

shown here a being on the same distribution server as the
signed ADF, the application may be located on a different
server. The server transmits the application code to the
client device . Upon receiving the application code, the
client device compares it to the parameters in the signed
ADF. Specifically, it compares the hash received in the
signed ADF with the hash of the application, and may also
verify attributes such as file size. The hash of the JAR file
may be produced by the client device, and compared to the
hash received in the signed ADF. If the hash of the
application received in the signed ADF matches the hash of
the received application file, the client device loads the
application into the virtual machine environment for
execution according to the security and license policies, if
any were present in the ADF.

 Thus, the invention avoids the use of relatively
large files and certificates for authenticating the application
code, as is used with more powerful, general purpose
computers. A typical certificate will be 100-500 bytes, the
file hash about 20 bytes, the DDF about 100-200 bytes, and
of course the JAR file can be very small to very large,
depending on the application. The use of a signed ADF
allows devices with relatively limited resources to easily
authenticate the trustworthiness of an application, and to
set appropriate permissions for the various resources. The
security is accomplished by providing the client device
with a set of keys initially, such as the code signing
certificate authority key and a time stamping root key.
Furthermore, a developer provides their public key in the
signed ADF so that client devices can use them to further
establish a trusted chain. A hash of the application, and
preferably a signed hash, is used so that it may be
compared to the application once it is received at the client
device. A security policy file and a license policy file may
be provided to describe what resources the application will
need, what it will create, and the limitation on the use of
the application as well as the transferability of the
application.

3.6 Performance evaluation

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1991
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

First examine the time taken to create a log file and
then measure the overhead in the system. With respect to
time, the overhead can occur at three points: during the
authentication, during encryption of a log record, and
during the merging of the logs. Also, with respect to
storage overhead, we notice that our architecture is very
lightweight, in that the only data to be stored are given by
the actual files and the associated logs. Further, JAR act as a
compressor of the files that it handles and can evaluate our
performance by the following parameters they are Log
Creation Time, Time Taken to Perform Logging, Log
Merging Time Size of the Data JAR Files.
While the preferred embodiments of the invention have
been illustrated and described, it will be clear that the
invention is not so limited. Numerous modifications,
changes, variations, substitutions and equivalents will
occur to those skilled in the art without departing from the
spirit and scope of the present invention as defined by the
claims.

4 CONCLUSION

 In cloud computing, we can ensure the trustiness
of cloud by using accountability. CIA can provide access
and usage control with authentication. Accountability is
used for tacking the data that means tracing the control of
data. We can use JAR files that contain user’s data and their
policies. JAR file can be authenticated; so that it allows the
developer to develop more powerful applications even
modify the code and audit the code of the copied code by
the attacker. It includes advantages are can able to
distribute applications to many different mobile devices,
information gathering capabilities is high and portability.
This paper discussed the accountability in cloud computing
and that can be applicable in portable devices

REFERENCES

[1] Andreas Haeberlen,”A case for accountable cloud”, Max Planck Institute
for Software Systems (MPI-SWS) [[2] Cloud Security Alliance. (2010).
CloudAudit The Automated Audit, Assertion, Assessment, and Assurance API)
Available: http://cloudaudit.org/
[2] Sonam Chugh and Sateesh Kumar Peddoju, “AccessControlBased Data
Security in Cloud Computing”, Vol. 2, Issue 3, May-Jun 2012, pp.2589-2593
[3] Eric Keller, Ruby B. Lee and Jennifer Rexford,” Accountability
in Hosted Virtual Networks”,
[4] Jinhui Yao and Chen Wang,”Accountability as a service for the
cloud”
[5] Veerraju Gampala, Srilakshmi Inuganti, Satish Muppidi “, Data
Security in Cloud Computing with Elliptic Curve Cryptography
”, International Journal of Soft Computing and Engineering
(IJSCE) ISSN: 2231-2307, Volume-2, Issue-3, July 2012

[6] V.Sathya Preiya, 2 R.Pavithra 3 Dr. Joshi,”SECURE ROLE BASED
DATA ACCESS CONTROL IN CLOUD COMPUTING”,International Journal
of Computer Trends and Technology- May to June Issue 2011
[7] Ms.P.M.kiruthika, Ms.T.Amirtha and Mrs.R.Deepa,”A framework for
accountability and trust in cloud computing”, International Journal of
Communications and EngineeringVolume 01– No.1, Issue: 03 March2012
[8] Kyriacos E. Pavlou and Richard T. Snodgrass,”Achieving database
information accountability in the cloud”,Department of Computer Science,
The University of Arizon
[9] Ryan K L Ko , Peter Jagadpramana , Miranda Mowbray Siani Pearson ,”
TrustCloud: A Framework for Accountability and Trust in Cloud Computing”
[10] S.Sajithabanu and Dr.E.George Prakash Raj,” Data Storage
Security in Cloud”, IJCST Vol. 2, Iss ue 4, Oct . Dec. 2011.
[11] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamics for Storage Security in CloudComputing,”
Proc. 14th European Symp. Research in Computer Security (ESORICS ’09),
pp. 355-370, 2009
[12] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J.
Hendler, and G. J. Sussman, “Information accountability,”
Communications of the ACM, vol. 51, no. 6, pp. 82–87, June
2008.
[13] A. R.Yumerefendi, J. S. Chase. Strong accountability for network
storage. ACM Transactions on Storage, volume 3, issue 3, article No. 11,
2007
[14] Y. Zhang, K. J. Lin, T. Yu. Accountability in service-oriented
architecture: computing with reasoning and reputation. In proc. IEEE
International Conference on e-Business Engineering, pp. 123-131,2006.
[15] 104th United States Congress, “Health Insurance Portability and

Accountability

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1992
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

IJSER

http://www.ijser.org/

	Ensuring Accountability in Cloud for Portable Devices
	Reshma Sadasivan, Sangeetha, Dr S.Karthik
	Abstract-Cloud computing is about moving computing from the single desktop pc/data centres to internet. In cloud computing, user’s data can be put it in the cloud storage and it can be access from the cloud, by the users whenever and wherever they nee...
	3 MODULE DESCRIPTION
	REFERENCES

